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ABSTRACT

An alternate constitutive formulation for visco-elastic materials, with

particular emphasis on macromolecular viscoelastic fluids, is presented by

generalizing Maxwell's idealized separation of elastic and relaxation

mechanisms. The notion of relative rate of change of elastic stress is

identified, abstracted, and formulated with the help of the established theory

of finitely elastic isotropic materials. This gives a local rate type

constitutive relation for an elastic mechanism in a simple material.

For the simplest class of viscoelastic polymer melts, the notion of rate

of change of elastic stress and its damped accumulation is identified and

formulated. Under conditions of moderate strain rates, this scheme implies

the reliable K-BKZ model for a class of polymer melts. An obvious extension

generalizes the remaining classical spring-dashpot models.
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Nomenclature

(1) :The set of second order tensors .A-91 is identified
with a 3X3 matrix in a Cartesian co-ordinate system.

(2) sym1l: The set of symmetric second order tensors.

(3) Q :A second order tensor Q is orthogonal if and only if
QTQ

*~ ~ X - : t*

* (4) "( (Fto(T)): This is a symbol for the functional
'Tt L -1 P.4 )sYm, where ZMis the set of piecewise

coninou an*differentiable strain histories #1
It : [toJ~Z Other functionals appearing -

in this paper, unless otherwise specified,
should be interpreted in a similar manner.
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ON K-BKZ AND OTHER VISCOELASTIC MODELS AS CONTINUUM
GENERALIZATIONS OF THE CLASSICAL SPRING-DASHPOT MODELS

Amitabh Narain

1. Introduction: The K-BKZ model ((2], [18], [331) for .. ' *

viscoelastic fluids is known to give good experimental fit for

rheometric data ((20], [331) obtained for an identifiable class of

melts. However, there are viscoelastic fluids and strain rates ".".

([21], [381) for which the K-BKZ model does not give good results.

Among all the models for viscoelastic fluids, Maxwell's model

((28]) of a spring and a dashpot in series has always been used to

give a qualitative meaning to elasticity and relaxation found in

*. these fluids.

In this paper we show that if Maxwell's notions are quantified

and generalized for an idealized strictly viscoelastic fluid

possessing only the two mechanisms of fluid elasticity and con-

* figurational stress relaxation, then, at moderate strain rates, it

leads to a K-BKZ model. The single integral models due to

Doi-Edwards (13], Curtiss and Bird [12], Bernstein, Kearsley and

Zapas [2], Rivlin and Sawyers (301 are closely related and, in a

sense, more general than a generalized Maxwell model. A survey

article of Tanner (33] and rheometric models of Wagner ([36], [37])

and Laun [20] make it worthwhile to understand the scopes and limita-

tions of the K-BKZ model.

Most viscoelastic models fall in the category of Noll's simple

materials [25] and Coleman and Noll's simple fluids [9]. Here we

. abstract and generalize the essential physical notion of Maxwell in
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such a way that the formulation is consistent with the statements

of a Simple Material ([251, [341), Objectivity ([251, [35]), and
1V

material symmetry ([25], [35]) associated with the natural rest

states of a simple material.

The standard definition of a simple fluid is given by Coleman

and Noll [9] in terms of a functionali such that the extra-stress

is given by

T + p! = (Ct(t-s)]; (1.1)

where T is the Cauchy stress, p is the pressure. and Ct (t-s) is

the right Cauchy-Green tensor evaluated at the past time T = t-s<t.

In order to model the simplest viscoelastic fluid within the

framework of (1.1), the notion of relative rate of change of

elastic stress is identified in the established theory of finitely

elastic isotropic materials. This allows changes in stress on a

deforming elastic element to be interpreted as a response to the

non-dissipative changes occurring in the material alignment within

the element. It is then noted that a change in material alignment

can be important in a solid as well as in some fluids. However, a

solid has a preferred material alignment in its rest state and a

fluid has no preferred material alignment in its rest state. This

fact is used in introducing and formulating the concept of relat~vi

rate of change of elastic stress t(T) for an incompressible stri--t

viscoelastic fluid. A strictly viscoelastic fluid is a generaliz _'J

Maxwell fluid endowed with the two mechanisms of elasticity and

configurational relaxation. Under the conditions of moderate .-

strain rates, we develop the following generalized Maxwell modc':

2
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.. T -p! + G(C) ;t(t-a)da, t>0 ..

ItT = trdU
CT ,1

%;. _~--k[fl([,ii) Ct(T) + f2(I,II) Ct-I(T)] ' .

-. ~I = tr ctc ( ) ,}-:,

and

II = tr Ct -  (T).

In (1.2), G(O) = 1, G(*) = 0, is a non-dimensional monotoni-

cally decreasing relaxation function. The functions fl and f2 are

scalar valued and satisfy the conditions of zero extra stress for a

rest history

fl (3,3) + f 2 (3,3) = 0,

and the condition for compatibility with linear viscoelastic fluids

{f 2 (3 3) - f 1 (3,3)} + 13 (3) - I(3,3

a f 2 a f2 (3 1,.,
(3,3) - 3 --1.

Once a Maxwell model is generalized to (1.3), we present obvious

generalizations of other spring dashpot models for Jeffrey's liquid

(see [27]) and the standard linear viscoelastic solid ([14], p. 175).

3
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2. The spring and dashoot models. --

We will now recall some classical spring and dashpot models.

For a long time it has been recognized (see i11), p. 26) that, if

one does not take the analytical form of these models literally,

the physical ideas underlying the classical mechanical models

should have a valid qualitative generalization to general three

dimensional straining. -.

a. A spring as a model for finite elasticity.

When a non-linear spring (see Fig. 2.1) has a strain ( (t) with

respect to its unstretched configuration (E(to)=0) occupied at some

time to , the stress 0(t) is given by a function g such that

0(t) =g(E(t)); and g(O) =0. (2.1)

a a i

\ /r - -

Fig. 2.1: A spring as a model of one dimensional elastic
solid.

This constitutive assumption also can be written in the form
t

0(t) = L (T)dT,

0
where

;(T)= () SLdg (E (T)) T 4 [to,t] (2.2)

This emphasizes the notion that this model has an undamped accumu-

lation of elastic stress rate ;(T). We wish to use the notion of

4

............... "..........................................-...............
°, ...• • "o. . . . - . . J , ° - A *A ° *•. " - . " . _ , • , . " - - • , °.,A- ,



accumulation of elastic stress rate to develop a constitutive

4 theory later in this paper. P.

b. Maxwell model of a spring and a dashoot in series.

The Maxwell model, with a spring and a dashpot in series 
([271, "1

p. 21), was meant to model the one dimensional straining of a

viscoelastic fluid (see Figure 2.2).

Fig. 2.2: A schematic representation of a Maxwell model.

The mechanical devices within the circle represent
physical mechanisms in a neighbourhood of the
particle P.

If c(t-s) - E(t) is the relative axial strain of a fluid ele-

ment from the current strain e(t), then in this model, the stress a

on the particle P at time t is given by

(Plt) f exp(-(t-t')/X)ke(t')dt'

(2.3)

o J exp(-s/X) {k (t-s)} ds,

where E is the strain, and X - . In Fig. 2.2, k is the linear

spring constant and n is the dashpot coefficient ([14], p. 175).

Eq. (2.3)2 has the following alternate interpretation.

Principal changes in stress occur through the elastic mechanism 7

represented by the spring. The rate of change of elastic stress

5



;(t-s) (or t(t-s)) at any past time T = t-s, in this case, is

given by -

;(t-s) = ke(t-s). (2.4) -

Because of the relaxation mechanism, the current value of

stress can be interpreted as a damped and weighted accumulation of

previous elastic changes in stress. The non-dimensional relaxation

function exp(-s/A) can be generalized to G(s) and a Boltzmann form

of the Maxwell model may be written in the form k

00

c(x,t) = G(s) ;(t-s) ds. (2.5)

0

In (2.5), G(s) is assumed to be a positive, monotonically

decreasing, and piecewise continuously differentiable function such

that

(0)= I,

and (2.6)

lir G(s) = 0.
S-*O 00'" .

The above interpretation of the Maxwell model will provide

some very interesting consequences when it is suitably generalized • .

later in Sections 5, 6, and 7 of this paper.

c. The-standard linear viscoelastic solid.

The standard linear viscoelastic solid ([14], p. 175) consists

of a Maxwell element in parallel with a spring (see Fig. 2.3).

I2. . .
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Fig 2.3: The spring in the above model provides the
solid type behaviour. Viscoelastic mechanism
comes through the Maxwell component of the
model.

In this case, it is well known that a in Fig. 2.3 is given by

o(P,t) = EE(t) + exp(-s/)) {k (t-s)} ds. (2.7)

0

d. Jeffrey's model with Newtonian viscosity.

To allow for noticeably distinct eftects of raFp.d relaxation at

very early times, presumably associated with Newtonian liquids, it

is customary to allow for analogues of Jeffrey's liquid (271. The

mechanical model corresponds to a Maxwell element and dashpot in

parallel (see Fig. 2.4).

aP

Fig. 2.4: The two dashpots have the coefficients of

and The linear spring constant is k.

Here it follows that in Fig. 2.4 is given by

-d,,(t))I +_.._(-,k.(t-s) ds. (2.8)

r=t -

0

7
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3. A brief review of the theory of simple materials.

Before we give a qualitative continuum generalization of the

notions in section 2, it is convenient to briefly review the

general scheme of Noll [25] and Coleman and Noll (9]. A standard

single reference for such matters is Truesdell and Noll [35).

Let X be the place occupied by a particle P of a simple

material in its natural stress free configuration K at time to.

Let the current position of the particle P at time t be x, and let

the motion for T4(to,t] be given by either ~ = X t (x,T) or =Xt°

(X,T). Clearly, at T = to, we must have

Xt(x,t O ) = (X,tO ), (3.1)

which may be inverted to obtain

x = Xt-l(X,to), (3.2)

and, thus

~= Xt(xt-l(X,to),T) = Xto(X,T).

The deformation gradients Ft (X,t) and Ft (x,to ) are defined by . -

[tO (X,t) = Grad Xto(X,t),

and (3.3)

Ft(x,to) = grad Xt(x,to),

and we note that

Ft (xt-) Ft (XtV' (3.4)

The Cauchy stress T (x,t) of a homogeneous simple material for

which the deformation is measured from its natural configuration

is specified by a response functionaly1% sucn that

Since

8
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!t (X, T) Ft0 (X,t) Fto (X,T), (3.6)

it then follows that

T " (Ft(T) Fto (t)). (3.7),I.

Note that the form of the functional ){ depends on the natural

configuration K. For simple materials the restriction of

Objectivity ([25], (34]) on is given by

'_(Q(T)Ft(T)QT(t) Q(t)Fto(t)) = Q(t) w (Ft(T)Fto(t))QT(t),

(3.8)

for any orthogonal tensor function Q(T), to  T < t. Using the

polar decomposition [161

!t (T) = Rt(T) Ut(Z) = Vt(T) Rt(T) (3.9)

and choosing

Q(T) = Rt(T) T ,  (3.10)

we then see that (3.8) yields M.

' (Ft(T )Fto ( t ) )  = (Ut(T) Fto(t)). (3.11)

Thus, we have

T = '0(Ut(T) Ft0(t)) 0 (t)). (3.1

The new response functional V above is defined and introduced

for convenience. Objectivity requires that W. satisfy

Q~) (,TF t ) QTt (Qt(t()Tt

(3.13) W!

for every orthogonal Q. The form of (3.12) emphasizes that sniy

the intermediate local shape history with respect to the current

9t
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configuration (measured through Ut(T), to < T < t) and the current

local shape with respect to the reference configuration K (measured

through Fto(t)) affect the current value of the Cauchy stress at a

material particle. Now the particular natural rest configuration K

in the development above may be indistinguishable from others in a

set of natural configurations which are related to K by transfor-

mations belonging to a symmetry group [16] associated with the

local material alignment. A common statement of this symmetry

invariance requirement states that (c.f., [341), b

T = (Ut(T), Fto(t) H) (3.14)

(Ut(T., ,. "t~ )

for every tensor H in the symmetry group < associated with K

for a given material. For an isotropic solid, AK is the full

orthogonal group ([34]), and it is well known that in this case

(3.9) and (3.14) may be combined (with H = Rto(t)T) to give

T =(Ut(T), Vto(t)). (3.15)

One finds, using the uniqueness of the decomposition in (3.9),

that

Vto(t)- = Ut(to). (3.16) - i
It is also known that the right Cauchy - Green tensor Ct(T) is

given by

Ct(T) = Ut(T) Ut( ), [t o , t .  (3.i7.-

Using (3.16) and (3.17) in (3.15), we introduce a functional

such that

10
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T = [Ct(T)' Ct(to)]. (3.18)

In (3.18), the material is in its undistorted configuration 1_ to

time to (i.e., Ct(T) = 0 for T < to). This means that the represent-

ation of the functional in (3.18) does not depend on the specific

choice of th undistorted configuration K and the associated time

to (see Appendix A). This allows us to assert that the natural

state of an isotropic simple solid determines a response functional

-J such that

TJ =Ct(T)]. (3.19)

In (3.19), the explicit dependence of _UC(,Con Ct(tO ) accounts for

the differences in material alignment of the current state and the

preferred isotropic material alignment of the rest state.

Furthermore, the Objectivity requirement (3.13) reduces to

QCt O[ ( = (o [r E (T(cTt( )I]QT (3.20)

for every orthogonal tensor Q.

For an incompressible ([341, p. 44) simple fluid, < is the

full unimodular group (i.e., any H*fk satisfies det H = 1) and the

resulting constitutive theory reduces to (see [34], p. 57)

= -p! + [Ct(T)], (3.21)

with the constraint

det Ct(T) 1, T[tot].

in (3.21), p is a constitutively indeterminate pressure and is

independent of the choice of reference configuration. Also, (3.21)

allows the possibility of finding an undistorted state only as the

. tume to---) for a given 0 < t < x However, if to is finite

. .- .... . . . . . . . . . . -...



(to > - 0), then the statement (A.12) in Appendix A allows us to

set to -- without changing the value of the stress. Therefore,

without loss of generality, we can set to =- in (3.21) and this

makes (3.21) equivalent to the statement in (1.1).

JL

12
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*4. Finite elasticity and the notion of relative rate of change of b

elastic stress IZt(T).

*Let us consider an isotropic solid which is purely elastic and

therefore is an analogue of the spring in section 2a. In this case -.-.

(3.18) is given by

%T(x,t) = Ct(T), Ct(to)]

- fK (Ct(to)) (4.1)

de f

where
def

B(t) Ft t(t) Ft (t)T

- t(toV 1l. (4.2) ~

and
K K

Q g (B(t)) OT =g (QB(t)QT)

for every orthogonal Q. Similarly, the intermediate stress T(E,T)

*at a time T4 [t0 1 t1, is given by (see Appendix B):

=(,T f(C (t)()3

- ~t (to) (Ct T)

where the response function 4 Ct(to) depends explicitly on Ct(t0 ).

The restriction of Objectivity (see (B.5) in Appendix B) becomes

9~t(to)QT(Q Ct(T)QT) Q 9 ktto)(Ct(T))]QT (4.4)

for every orthogonal tensor Q and T4(Et 0 ,t].

We define the material derivative of (4.3) at time Tas rate

of change of elastic stress -t-, and write

13



T (&,T) - CO [Ct(to) (Ct(T})] (4.5) .

;t (T). :-''-

Since at time to, the particle is at X and the material element is

*. in its natural configuration K, we have

T (X, to ) = 0. (4.6)

Collecting (4.5), (4.6), and (B.3)3 from Appendix B, we have

0

to d<

Scgt(to)(l = g (B(t)).

The first equality in (4.7) 1 allows us to interpret the current

value of Cauchy stress as an undamped accumulation of elastic

stress rate-fft(T). This stress rate measures the rate of non-" -"'"-

dissipative changes occurring in the material alignment of the ele-

ment. We wish to borrow this notion of instantaneous elasticity

or relative rate of change of elastic stress ;t(T) for modeling

instantaneous elasticity in fluids. Of course, for a fluid, if

= d -Ct(to) (CtT) ,T( [tot], (4.8)

then the additional restriction of fluid symmetry leading to (3.20)

suggests that ¢Ct(to) in (4.8) will become independent of Ct(to).

This is because the rest state of a fluid has no preferred material

alignment but there are differences in material alignment between

two unrelaxed stressed states of an elastic fluid element.

It is further noted that it is impossible to have an

incompressible purely elastic fluid in the sense of an elastic

14
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* solid in (4.7). This is because an incompressible purely elastic

fluid will have

T(x, t) ;t(T)dT

0

=$li) - O(Ct(tO)), (4.9)

for ;t(T) =d '(Ct (Trf

Now, for a constant Ct(to) 1 and t ~,T(x,t) in (4.9) does not

tend to a hydrostatic pressure for an arbitrary isotropic 0. This

is in contradiction to the notion of a rest state for a fluid.

However, as we see in the next sections, a fluid (like Maxwell

model) can possess instantaneous elasticity given by (49) if it

has some additional mechanism of stress relaxation. : :

15



5. On phenomenological motivation for modeling a class of Polymer

melts as a generalized Maxwell model.

We now wish to motivate the suggested notion of rate of change

of elastic stress. For this purpose, we consider a class of -. J

polymer melts as a representative strictly viscoelastic fluid.

Therefore, in what follows, the following specific phenomenological

,. picture of macromolecular deformation is essential to the validity

of the modeling presented in this paper.

Here we are concerned with polymer melts which contain

numerous supple (flexible) tubelike strands of macromolecules and

their networks. During deformation, an obvious example being

extensional flows, an arbitrary material element of the fluid may

contain somewhat oriented strands of macromolecules. Yet the

stress free prolonged rest state corresponds to tensionless strands

of macromolecules which are randomly oriented within a specified

fluid element. This random orientation of inert tensionless macro- -

molecules is required for consistency with the unimodular symmetry

[34J expected from the prolonged rest state of any simple fluid.

However, when a stressed fluid element is deformed from one shape

to another, the supple resilient macromolecules conform to the new

shape and some stress is generated through tension in the macromo-

lecules. As the fluid element is made to change its shape by

incremental stress, this new deformed shape has some elastic pro-

pensity to return to its original shape. Accompanying this moment- gl

ary non-dissipative change in the alignment of the macromolecules,

on a lagging time scale, there is a release of tension through

dientanglement and readjustment of macromolecular networks. This

16
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release of tension within an oriented shape of macromolecules i.

assumed here to be the principle mechanism of configurational

relaxation. This notion is perhaps the same as the notion of

configurational relaxation proposed by Giesekus (15]. Of course,

if the fluid element stops deforming, this configurational relaxa-

tion will eventually produce a state of tensionlessness and this

state will easily allow randomizing of macromolecular orientation

to take place. Therefore, any randomizing associated with relaxa-

tion is assumed to be noticeable only in cessational flows

(straining of a fluid element stops), and even in this case configu-

rational relaxation is assumed to be the dominant part of relaxa-

tion. Therefore, we assume that changes in stress are due to two

mechanisms: one is through an elastic mechanism and the other is

through a relaxation mechanism. The elastic mechanism corresponds

to resilient alignment of supple macromolecules within the changing

shape of a fluid element. We further assume, despite the presence

of some possible reptations (131, that all effects of material

alignment can b4modeled by the changing shape of a fluid element.

Since we are interested in the current value of the Cauchy stress.

it is beneficial to use the current configuration of a fluid ele-

ment for modeling different elastic contributions from differently

aligned macromolecules in shapes different than the current one.

For this class of polymer melts, as said earlier, we assume that

the effects of the tendency of macromolecules to randomize within a

deforming material element is insignificant when compared to

configurational relaxation and the elastic mechanism associated 01

with direct mechanical straining*. rhis does not mean that all

*The fact that randomization in some melts and concentrated solu-
tions can be ignored is also discussed by Marrucci (Polymers,
Liquid Crystals, and Low Dimensional Solids, Plenum Press, p.
149, 1984).

17. . -



polymers can be modeled by ignoring effects of macromolecular ran-

domization within a given shape of a material element. In fact.

the known theories ([5], (61) of rubber elasticity and other

theories of entropic elasticity (111, (61), can possibly be adapted ,-o.-

into this proposed modeling approach to include the effects of

macromolecular randomization. However, in this paperwe restrict

ourselves to those melts which have ignorable contribution asso-

ciated with randomization.

Therefore, when a strictly viscoelastic element (identified at
def

the current time t) is strained from a configuration C(t)(O+A) =

Ct(t-(c+AG)) to a configuration C(t (3), the change in shape acti-

vates a direct change in stress (modeled as elastic change) 
7t AO

t (t-G)AG+ o (AG) near the past time T = t-c Having looked at

the notion of relative rate of change of elastic stress in section

4, we borrow the constitutive model (4.8) for dependence of ;t(t-cy)

on the strain Ct(t-G) and on the strain rate 6t (t-O).

Because of the presence of relaxation mechanism, the current

value of Cauchy stress T(x,t) is a damped accumulation of incremen-

AO
tal stresses t This notion is a qualitative generalization of

Maxwell model and is formally stated in the next section.

or

18



6. On idealized presence of elastic and dissipative mechanisms for

a generalized Maxwell model.

For a strictly viscoelastic fluid, we assume the standard

kinematics of section 3. In addition, at any instant of time t,

while chasing an identifiable neighbourhood of a particle P, there

exists a rate of change of elastic stress history

;(t): [0,-) t sym (6.1) .-..

and ;(t)(s) = T(Pt-s) = t(x,t;t-s) is the relative rate of

change of elastic stress. For T*[to,tl and to > - , (4.8) is h

written as

t=( ID [ ct to )(ct (T 1 .
d

(6.2)

oD Ct(to) (Ct(',)) Ct(T).

In (6.2), the strain dependent elasticity modulus "qDCt(to) (Ct(T))"

models the effect of material alignment in changing shapes and the

strain rate Ct(T) is the principle cause of changes in stress.

For now, we postulate 7t(T) to be given by (6.2) subject to - "

further restrictions imposed by the increased symmetry of the rest

state of a fluid. To model the effect of relaxation and its possible

coupling with elasticity, we postulate that the current value of extra

stress for an incompressible generalized Maxwell fluid is given by

T(x,t) = -p1 + "I [Tt() ], (6.3)

li

where ' is an accumulation functional associated with relaxation.

Nitiout loss of generality, the rest state is taken to be at to ...

and (6.3) is rewritten as

19
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def
T - -pl + (;t(t-S) -p + [(t)] (6.4)

On substituting (6.2) in (6.4) and then applying the notion of

fluid symmetry leading to (3.21)1 one can show that (6.5

;t (T )  D "-'.(T) (6-5

for Tj(--,t]. Clearly (6.4) and (6.5) together give a special

class of simple fluid given by (1.1). The mathematical assumptions

on.Y which leads to (6.4) and (6.5) may be an interesting area of

investigation. However, in this paper, as is the case with the

original Maxwell model, the notion of elasticity and relaxation are

modeled directly on the basis of the phenomenology described and

assumed in section 5.

We now see that the restriction of Objectivity in (4.4) and (4.8)

implies isotropy of the function 0 in (6.5). Therefore

'(Q Ct(T) QT) = Q 4D(Ct(T)) QT (6.6)

for any orthogonal Q. It is noted that the restriction (6.6) is

imposed by the fact that our Euclidean space has no preferred

directions and it has nothing to do with material isotropy at the

strain Ct(T). In fact, we recall:

(Ctlt-s)) = D D (Ctlt-s)) (6.7) "'~ .

in (6.2) measures the effects of relative differences in material

alignments between the continuum configurations at times T = t-s

and , = t. It is instructive to relate the choice in (6.5) to the

notion of elastic resilience alluded to in the phenomenological

description of section 5. For this, consider a past time = t-(:-"

def
and the strain Ct( :-(+'.)) = C(t)(1+.Y1). When the fluid element '.
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is brought to the configuration C(t)(a), we do so by an incremental

stress t-o .72 -:-

:t f t(t-s)ds
t- (a+A)c)

= [ (Ct(t-a)) - O(Ct(t-(G+Aa))] (6.8)

=.l(C(t)(a))- O1C(tl(G+o)).

Now before relaxation sets in, if the incremental stress 7t was

set to zero, (6.8) requires that we must have

O1C~tlO+Aa1- C(t)(1a) = 0. (6.9)

In the thought experiment resulting in (6.9), we find that if 0 is

invertible at C(t)(a) (that is the elastic modulus DO (C(t)()) is

such that DO (C(t)(o))A = 0 implies A = 04 sym), then (6.9)

implies

Cl +Aal= C(t)(U). (6.10)

We view (6.10) to be in accord with the physical notion of elastic

recoil (see [41) when the stress IT is removed prior to the onset

of relaxation.
sup--"• .

Furthermore, if the maximum magnitude of strain SUP

Ct(T)-i Iexists and is close to zero, then Tt(t-s) in (6.7) can

be approximated by

-lt) Is) C Ctlt-s), (6.11) .1-. -

where C = De (1) is a constant fourth order tensor in the space of

linear maps from jsym to sym. The constant tensor C in (6.11)

makes sense because now there is no significant difference in

material alignments at all times ( t. On applying the isotropy

condition (6.2), we find that

Q CC tlt-s)] QT = [ [Q Ct(t-s) QT] (6.12)

for any orthogonal tensor Q. Using a well known result [32] often
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used in linear theory of elasticity, it follows that (6.12) implies

that C Ct(t-s) must be of the form

C=tt-s) =k t(t-s) + v trl6tlt-sl) 1 (6.13) WV

for some constants k and v. Eq. (6.12) and (6.13) embody the notion

of a linear elastic mechanism and correspond to a linear spring in

the Maxwell model of Fig. 2.2. The general isotropy condition in

(6.6) along with an adaptation of theroems of Rivlin and Ericksen .

[29], and Serrin [32] implies that P has a representation

!(Ct(t-o)) = (I,II)l + 0l(I,II)Ct(t-oJ) + 2(l,1I)Ct-l(t-o), .I

where (6.14)

I = tr(Ct(t-a)), and II = tr(Ct-l(t-o)).

As a result of the incompressibility condition (3.21)2, the third

invariant of Ct(t-o) does not appear in (6.14). 00, 01, and 2 in

eq. (6.14) are material functions of the invariants I and II.

22
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tion h be small. Of course we assume that the norm of D( remains

bounded in the space of linear maps from 'sYm to *JsYm. Therefore,

this assumption allows for large and even unbounded magnitudes of

strains as long as t(t-s) is small in the recent past. We now

make an additional physical assumption regarding G. Let G be posi-

tive on [0,-), piecewise continuously differentiable on (0.-),

monotonically decreasing on 10,-),

(0)= 1,

and (7.5)

G(s) -- 0 as s-00

sufficiently fast for a meaningful integral in (7.3). The assump-

tion (7.5) on G in (7.3) can be shown to follow from requiring that A
the magnitude of the traction vector on the boundary of a fluid

element must never increase if the element was made to experience a

static continuation (see [261 for the meaning of this term).

We note that 7(t) has the physical dimensions (ML-IT- 3 ) of

rate of change of stress. This implies that G(s) is nondimen-

sional. This, in turn, suggests a provable implication that there

exists at least one relaxation time - and a function G such that

G(s) = G(s/X) (7.6)

for every s> 0. "

If we now consider histories C(t) which are such that both

I I C(t)-i 11 h and j ) C(t) I 1h are small in the inner product space

induced by (7.1), then, the linearization (7.3) should be expected

to reduce to the standard and general result of Coleman and Noll in -

(5.18) of [10]. For such a history we use the linear relation for

-t) in (6.13) and substitute it in (7.3).
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After absorbing the multiples of unit tensor in the indeterminate

pressure, we find

TL in  -pl + d(s) k Ct(t-s)ds (7.7)

The result in (7.7) is compatible with the standard linearization

(cf. (5.18) of (101) ilk

TLin = -pl + G'(s) Ct(t-s)ds. (7.8)

0
The function G and G in (7.7) and (7.8) are related by

G(0) = k > 0,

and (7.9)
def - -

G(s) k G(s), s> 0. 1  .:

The result in (7.9) gives an important indication that the postu-

late in (6.3) is a good one. This is because 'G(0)/0 is known to

give the shock speed ([8], [23]) for a linearized strictly

viscoelastic fluid given by (7.8). Interpretation of G(0)=k as

modulus of the elastic mechanism in the fluid seems to give meaning

to this result. The shock speed is therefore due to elastic resi-

lience to impact. Also various results of Coleman, Gurtin and

Herrera [9], Narain and Joseph [231, and Renardy [28] show that the

amplitude of a shock decays with time as exp (tG'(0)/G(0)). In the

above interpretation, the decay is governed only by the parameter

'(0) = G'(0)/G(0) < 0, and this parameter is related only to the

relaxation mechanism of a linearized strictly viscoelastic fluid.

Similar interpretation of other formulas of Narain and Joseph (23]

is discussed in Narain (22].
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8. The assumptions underlying the K-BKZ type models for polymer

mel.ts.

In a survey article, Tanner (331 finds that the K-BKZ type

model is superior regarding compatibility with experiments in a .

large class of motions of polymeric fluids. Tanner (33] indicated, e"0"-,,.*% ,

that there is no good qualitative understanding for this model. It

is hoped that this paper contributes towards this purpose. The

representation of the K-BKZ model seems to be based on the assump-

tion that the fluid can be modeled as a generalized Maxwell model

and that the strain-rates are moderate enough to ignore the second

term in (7.3)1 . On substituting (6.5) in (7.3)1, and ignoring the

smaller term, one finds

00
T -pl + -G(s) 1~(Ct(t-s))ds. (8.1)

The assumption of moderate strain rates seems to be justified by

the fact that the K-BKZ model (8.1) is not accurate (see [21]1)

under high strain rates involved in experiments with multiple steps

in strain . This is because, under these conditions, II ct 11h and
hence o ( II t1 h) in (7.3)1 is not negligible. Physically, this

amounts to saying that the time scale associated with rate of

strain is small compared to a characteristic time scale X of

U-
relaxation (high Weissenberg Number, X E:see (3.15) of [111). That

is, rate of elastic energy build up far exceeds the dissipation

rate and therefore the assumption of independent elastic and

relaxation mechanisms in (8.1) is not very good.

On substituting (6.14) in (8.1) and integrating it by parts

while absorbing the multiples ot unit tensor 1 in the pressure

term, we find
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T -pIl+ I '"(a)f~3(III)Ct(t-G) + 02 (I,II)Ct~l(t-G)}dG. (8.2)%
- -f

0

one can relate (8.2) to the popular K-BKZ form ((33]), by intro-

ducing
def -

a(G) -- k G'(a) =-G'(aJ),ay > 0

i def

and (8.3)
def

where k>0 is the same as in (7.7).

Using (8.3), (8.2) is written in the form

T T -pl + fa(G){fflI,II)C(t-Y) + f2 (1,II)Ctl(t-aY)}da. (8.4)

The functions f1 and f2 in (8.4) can be normalized by requiring the

* extra-stress to be zero for the rest history Ct(T) =1, T < t.

This gives

fl(3,3) + f2 (3,3) =0. (8.5)

Furthermore, a linearization of (8.4) gives

T =-p1 + a 0~c) C Ct(t-a)da, (8.6)
f 0"
0

where

c (3,3) - 33) + (33 9 f2 (3,3i

+ fp3,3) -f 2(3,3)).

For (8.6) to be compatible with (7.8), it is required that

C = -1.(8.7)
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8. The assumptions underlying the K-BKZ type models for polymer

melts.

In a survey article, Tanner [33] finds that the K-BKZ type

model is superior regarding compatibility with experiments in a

large class of motions of polymeric fluids. Tanner [33] indicated

that there is no good qualitative understanding for this model. It

is hoped that this paper contributes towards this purpose. The

representation of the K-BKZ model seems to be based on the assump-

tion that the fluid can be modeled as a generalized Maxwell model

and that the strain-rates are moderate enough to ignore the second

term in (7.3)1. On substituting (6.5) in (7.3) 1 , and ignoring the

smaller term, one finds

C-

T -p! + 6(s) G d ((Ct(t-s))de. 18.1)

The assumption of moderate strain rates seems to be justified by

the fact that the K-BKZ model (8.1) is not accurate (see [21])

under high strain rates involved in experiments with multiple steps

in strain . This is because, under these conditions, IICt II h and

hence o (I t 11 h) in (7.3)1 is not negligible. Physically, this

amounts to saying that the time scale associated with rate of

strain is small compared to a characteristic time scale T of

relaxation (high Weissenberg Number, X !:see (3.15) of [11]). That

is, rate of elastic energy build up far exceeds the dissipation

rate and therefore the assumption of independent elastic and

relaxation mechanisms in (8.1) is not very good.

On substituting (6.14) in (8.1) and integrating it by parts

while absorbing the multiples ot unit tensor 1 in the pressure

term, we find
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T =-pi + Z 1 1,OlIflICt(t-Cj) + 0 2 (,II)Ct'l(t-G)}da. (8.2)
- - 0J0

one can relate (8.2) to the popular K-BKZ form ((33]), by intro-

ducing .,

de f
a(0J) =-k GI (a) =-G (G) cy > 0

1 def

and (8.3)

1 def
k~ 2('IEJ = -f2 (I,II),

where k>0 is the same as in (7.7).

*Using (8.3), (8.2) is written in the form

T -pl +f a()fl(III)Ct(t-G) + f 2 (I,II)Ct-l(t-aY)}dcY. (8.4)

The functions fl and f2 in (8.4) can be normalized by requiring the

extra-stress to be zero for the rest history Ct('T) =1, T < t.

This gives

fl(3,3) + f2 (3,3) =0. (8.5)

Furthermore, a linearization of (8.4) gives

T 0aCO) C Ct t-oy dcya, (8.6)

* where

C t -j- (3 3) yj-(3 3), +UI-(3,3) - (3,3 )1

+ ff(3,3) -f 2 (3,3)).

For (8.6) to be compatiole with (7.8), it is required that

C =-.(8.7)
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The suitability of the above K-BKZ type model can only be

verified by applications and experiments. Important semi-empirical

formulations of Wagner ([36], [37]), Laun [20], and Chang and Lodge V-

[7] can easily be shown to lie in the above framework with fi(I,II)=0. -

Since Lodge's rubberlike fluid [3] is a special case of (8.4),

various experimental comparisons (33] suggest that it is advisable

to do melt rheometry in this more general framework. The most

important experimental verification and suggestion of the model in

(8.4) can be found in Laun's paper [201. This is briefly rein-

terpreted in section 11.
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9. On the generalization of standard linear viscoelastic solid.

In this section we generalize the notion of a standard linear.

viscoelastic solid shown in Fig. 2.3.

For an isotropic viscoelastic solid, the development of sec-

tion 3 leading to (3.14) holds. Using P(t) in (4.1)4 and the fact

that

B(t) = Vto (t) Vto(t)

uniquely determines Vto(t) for a given B(t), one can replace w....(

in (3.15) by a functional'Al such that

T(x,t) = IUt(T), Vto(t))

= .(B(t), ct(T)). (9.1)

Without loss of generality, we can set to = - 0 in (9.1) to

rewrite it in the more familiar form

T = (B(t), Ct(T)) (9.2)

given by Truesdell and Noll [35). We wish to seek a specific

* approximate representation of (9.2) for a generalization, under

conditions of moderate strain rates,of the model in Fig. 2.3.

For this we imagine a homogeneous matrix of a viscoelastic

solid with a stress free natural configuration K exhibiting isotro- Irk"

pic material symmetry. It is helpful to imagine that this matrix

is made up of random distribution of elastic rod-like solids and

xible melt like macromolecules.

During any straining at a time T* [tO , t], the relative rate

r rhange of elastic stress "t(T) with respect to the current con-

figuration at time t can be modeled as
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;t(T) T= T) + rt T)' (9-3)

where

d

is the same as in (4.5) and

t d-[$C(t) (9.5)

is the same as in (6.5). Furthermore, by analogy to the case in

we cn pstuate hattheevolution of the Cauchy stress .-

at ny 4[t'tlis given as

T (~T) ;S T5 ~ ) + Tf ~T) , (9.6)

where

and

*d Agr ri
Tf ((,T = )) (9.8)

Now integration of (9.6) for an incompressiole solid yields

Kf
T(x,t) =-p

1. + g (B(t)) + R [Tt (T). (9.9)

The function gK in (9.9) is as defined in (4.1). Let to - ~~and

B(t) =. (A be such that the solid part of the matrix is
0U'

in its elastic realm governed by (9.7). Following the approxima-

tion leading to (8.4), at moderate strain rates, T in (9.9) can be

written as

T =p + gK (B(t)) +f-G'ifl {p)t),I~- Ct(t-'-) +

0

* where

g (B8 ) '(1t,1() (t) (911
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The last term in (9.10) is as in (8.4). The material functions Bl

Iand a2 in (9.11) are functions of
de f

Ijt) =trB(t), (9.12)

and

de f
12(t) =trB

1l(t).

S ifk
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10. The generalization of Jeffrey's liquid, and Kelvin-Voigt Solid

For polymer solutions in a low molecular weight Newtonian

solvent, one expects that the effect of the solvent is a rapid

relaxation associated with the dashpot in Fig. 2.4. The first term

in the right side of (2.8) can be shown to generalize to a

Newtonian term

d'a- (E(T)-(t)) ,=t Ct(T) T=t (10.1)

21j D(x,t).

In (10.1) above, D is the symmetric part of the velocity gradient

*grad V(x,t)". Using (10.1) and (8.4) it follows that (2.8) for an

incompressible viscoelastic fluid may be generalized as

T = pl+2PD+ (-G'(a)){fl(III)Ct(t-a)+f2 (I,II)Ct-l(t-c)}do. (10.2)
- .- -•J0

It is well known that (10.2) also follows from the strictly visco-

elastic model in (8.4) if we formally replace G(s) by

U6(s-0) + G(s), (10.3)

where 6(s-0) is the Dirac delta function andP >0. A theoretical

justification for allowing distributions in the kernel of the

linearized constitutive relation has been discussed by Saut and

Joseph (311. It is conceivable that the so called exact Newtonian

contribution in (10.3) is merely an idealized way of asserting a

rapid relaxation present in a regular G(s) near s=U.

Accepting the generalization in (10.1) and (4.7), a

Kelvin-Voigt incompressible solid ((17], p. 21) generalizes to give

T = -pl + g' (8(t)) + 2 .D(x,t). (10.4)

Similarly, a parallel combination of a Kelvin-Voigt element

and a Maxwell element generalizes to give

33
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T a g9 (B) + TJeffrey, (10.5)

where TJ~ffrey is given by the right side of (10.2).
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11. Compatibility of the K-BKZ model with some successful

semi-empirical models in shear flows.

of particular significance is the fact that some successful

semi-empirical models in shearing motion are implied by the K-BKZ

model. Consider a simple shearing motion in y direction and in

~ x-y plane; the motion x - X(X,t) of a particle X (X,Y,Z) is

given in Cartesian co-ordinates by the relation

(x,y,z) =(X, Y + P(x,t), Z). (11

The shear strain y(t) and the relative shear strain Ytcs) are

defined as

y(t) =x(~)

and

A standard calculation shows that the Cartesian components of

(t(s)is given by
* 2

(Ct~t-s 3=((t)s) = 1s 01

[C~-s]l+t(SlYt(s) (1.3

The corresponding components of Ct1l(t-s) is given by

Ect'l(t-S)] = 
1 -Y() +Y 2(s)

*~ Lot 1+t()l (11.4)

From (11.3) and (11.4), it follows that

I =tr Ct(t-s) =3 + yts)2 ,

and (11.5)
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II = tr Ct-1(t-s) = 3 + yt(s) 2.

Substituting (11.5) in (8.4), we find that the shear stress T<XY>

is given by W.

"f 2
T<xY> =J(-G'(s))WlYt(s)){-Yt(s)} ds, (11.6)

0

where

def
P(Yt 2s)) = f2(3+yt(s)2 , 3+Yt(s)

2 ) - fl(3+Yt(s)2 ,3+Yt(s)2 ).

Similarly the first normal stress difference NJ df T<YY>T<xX>

def
and the second normal stress difference N2 = T<XX>-T<zz> are

given by

N1  (-G' (01) I (Yt 2 (o)) yt(o) 2  da, (11.7)

0
and

N2 = (-G'(a)) fl(3+ Y (G), 3+yt 2 (0)) Yt 2 (a) da.
0

The function G and in (11.6) and (11.7) are chosen by Laun [20]

to agree with experimental data obtained from measurements of

steady viscosity and transient response to step-strain. In

Narain and Joseph [241, it was shown that the data of step-strain

experiments are reliable only at times larger than a charac-

teristic relaxation time. For a fluid confined between two flat

parallel plates, one of the plates is given a sudden displace-

ment, and if the effects of transients die quickly then the

assumption of step-strain gives useful asymptotic results [241.

Therefore if .elW

-I

for t>0 -..'

S (x t) =- "

for t<0.



we get
0 for 0<s<t

- 1-Y fors) (11.9)

def
=-y 0 (1-H(t-s)I

*Substitution of (11.8) and (11.9) in (11.6) and (11.7), one

arrives at

T(xY> (f-GI(s)) (YO 2 od (11.10)
t

and

Ni f0 (-G'(s)) 0 ('c)y 0
2 ds.

t

Now (11.10) yields the remarkable result

<xy> 2
T (t)/y 0  N . (11.11

Eqs. (11.10) and (11.11) are in agreement with the semi-empirical

formulas (15) and (16) of Laun's paper (201. The modeling for

*low density polyethylene was done with the following choices of G

and 4:

G(s) = ai exp (-p)(11.12)
T.

* and

(Y (s) f 1 exp (-nl Y Yt(s) I)+ f 2 exp (-n 2  Y s

In (11.12); Ti, i 1,2 ... is interpreted as a discretization of

a continuous spectrum ([17], p. 81) of relaxation times and Ti

depends on teitperature T through the Arrhenius type relation

((17], p. 73)

[E
( T) =exp -T (1113
T.(R T T T 0T) 1.3
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* For the choice of constants in (11.12) and (11.13), the reader is it

referred to Laun (20]. The remarkable validity of eq. (11.11)

has been noted by Wagner ([371, (38]), and Laun (20]. This vali-

dity of (11.11) for a low density polyethylene melt is shown in

Fig. 11.1.

We also note that step in shear rate, start up of elonga-

tional flows, and shear dependent steady viscosities for melts

can all be modeled (see [191) by (8.4). Successful modelings

done by Wagner (36, 371, Chang and Lodge [7], and Laun (201 can

be reinterpreted in the context of the K-BKZ model. The

superiority of this model in various flow regimes of moderate

strain rates has already been emphasized by Tanner [33].

1 0

_ __ 10- : 00

0

10- 1., 101 1o.o 1

Time t (s)

Fig. 11.1: In the above figure the shear relaxation modulus
G(ti p (Yo2  is computed through (11.10)1 as T<xYI/Y0 and
through (11.10)2 as T(YY>-T<xx>.YO2. In the figure At is the
approximate rise time. The results are taken from Fig. 5 of
Laun [203. The experiments were done at T = 150*C and dif-
ferent shear strains Y.. For t.l sec, the data is not
reliable because of the effects of transients.
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APPENDIX

A) Let us assume the kinematics of section 3 associated with

configuration K and write

=K
= < X t o ( X , T ) ,- 

"-

0

where (A.l)

K(P) X, to < T< t.

The constitutive theory leading to (3.18) assumes that the

material is undistorted up to time to. But this means that any

other undistorted configuration p of the particle P at a time to

could at most be a rigid rotation of the configuration K. To

describe this, let

K(P) =X,

and (A.2)

vPM Y.

Let \ be the invertible function which maps K onto 1' such that

= ( ). (A.3)

Now, for to < T < t, we introduce

KXt °  (i(y),T) (A .4)

def t (Y,T).

0

From (A.2) and (A.3):

Ft (T) = Fto (I)V , , (A.5)

o~ K'for T- [to , t]. In (A.4); Ft(T), Ft(T) and VX are respec-

tive gradients of Xto (y,) , to (X,r), and . The relation

in (A.5) implies that the two configurations (not pairs of par-

39. .. 
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tidles) K and P~ undergo the same changes in shape-history. The

two configurations K and P. are undistorted configurations of the

same material element only if

VX< Orth (A.6)

is an orthogonal tensor. The orthogonality of VA in (A.6) yields

the result
K

Ut = Ut(T) (A.7)

for all to < T < t. Now the natural definition of the response

functionals ~{and .((as introduced in (3.12)) are:

K t() K tt)

(A.8)

On substituting (A.5) and (A.7) in (A.8)1  we find

Since (VX)-l in (A.9) is orthogonal, use of the definition (3.14)

of isotropic material symmetry of the configuration Kimplies

that

K
T ='t) "Fto(T) (A'

(A.10)
-K%4 ('Ut(T) "F~t(t))

Therefore, for an isotropic simple material, combining (A.8) and

(A.10), we have

T % K$ ('Ut(T), Fto(t))

(A.11) .-
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- T )  Fto(t))

The result above establishes that for an isotropic simple

material, two undistorted real states have the same represen-

tation for their response functionals. Now if the arguments

given through (3.12) to (3.18) are repeated, we find

T- [ CEt(T), Ct(to)]

(A.12)

= (Ct lT ), Ct(to) ),

where .
K LI def

t(T) = Ct(T) =Ct()

for to < T < t. Furthermore, if the material is undistorted u-

to time to, we postulate that the representation of 'sin (3.18) AL

must be such that

T = [CtlT), Ctlto)] "'*

(A.13)

= #j [Ct(T), Ct(t*)]

for any t, < to. The motivation for (A.13) is the simple
K

undistorted rest state Xt (XT) X for all T <-to.

B) For an elastic solid, (3.5) reduces to

T(x,t) =( T))

= 41l(Ft Ct)),

'. and therefore

TI ~~~l,T) = (~lFto( T)) -'"-'.

In (B.1), such that 1 (1) = 0. If the current

configuration is used with the help of (3.6), we can define
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K

KK

whereJ -*z: sx~~ Ym. Furthermore, if the arguments leading to

(3.18) are repeated for the special case of isotropic elastic

solid given by (B.1) and (B.2), it is easily seen that there is a

K
* response function 0' such that

K

and it has the obvious values

T(Xt) = c~t) Ktt)

=0,

* and

K4

The result in (A.11) of Appendix A emphasizes that the choice of

any other undistorted configuration will yield the same represen-

K

* tation of in (B.3) .We use this to assert that there is a

response function Ic Ct 0t) (determined by the natural state of

the elastic solid) such that the Cauchy stress at a time T4Et0 1 t]

is givien by

T( -T) ii Ct(to) (Ct(T)). (B.4)

* Furthermore, in this special case, the Objectivity requirement in

* (3.20) reduces to

1Q Ctto)Q (Q Ct,)QT) =Q (4Ct&o (Ct(T))]QT (8.5)

for every orthogonal tensor Q.
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